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The architectural approach

1. Therefore, a microservice is a basic function of an application, which runs 
independently of the other services

@antonio_musarra

2. However, the architecture based on microservices not only involves the low coupling 
between the basic functions of an app, but proposes a restructuring of the development 
teams and of the communication framework between the services 

3. This approach offers the possibility to manage unavoidable critical issues, supports dynamic 
scalability and facilitates the integration of new features

4. To deploy microservices and take advantage of this approach, you need to adapt the basic 
elements of a Service-Oriented Architecture (SOA)
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2. In the early days of application development, even a minimal change to an existing app required a complete update 
and a quality assurance cycle (QA) of its own, which risked slowing down the work of various secondary teams. This 
approach is often referred to as "monolithic" because the whole app's source code was compiled into a single 
deployment unit (for example, with the extension .war or .ear). If updates to part of the app caused errors, it was 
necessary to disconnect everything, step back and correct. This approach is still applicable to small applications, but 
growing companies cannot afford downtime

3. And here comes the SOA (Service-Oriented Architecture) architecture, in which the apps are structured in reusable 
services that communicate with each other via an Enterprise Service Bus (ESB)
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1. In the SOA architecture, the individual services focus on a specific business 
process and follow a communication protocol, including SOAP, ActiveMQ or 
Apache Thrift, to be shared through the ESB
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2. Overall, this suite of services integrated through an ESB constitutes an application

3. In addition, this method allows you to compile, test and modify multiple services 
simultaneously, freeing IT teams from monolithic development cycles. However, since ESB 
represents a single point of failure for the whole system, it could pose an obstacle for the 
whole organization
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2. They communicate through language-independent application programming interfaces (APIs) and this 
allows development teams to choose their own tools.

3. Considering the evolution of SOA, microservices are not an absolute novelty, but lately they have become 
more attractive thanks to the advances in containerization technologies.

4. Today Linux containers allow you to run multiple parts of an app independently, on the same hardware, 
with far greater control over individual components and life cycles.

5. In combination with the API and DevOps teams, containerized microservices form the basis of cloud-native 
applications.
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The Platform

1. OSGi as a core technology of Liferay

@antonio_musarra

2. Defined best practices can be helpful

3. Transparent platform valuable for developers

4. Opportunity for iterative modularization
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The Platform

“ 

     […] you shouldn’t start with a microservices architectures. Instead 
begin with a monolith, keep it modular, and split it into microservices 
once the monolith become a problem.

                                                                        ”
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Martin Fowler (2014)
https://martinfowler.com/articles/microservices.html
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What are the key aspects of a platform like Liferay that embraces 
modularity?

Allow independence of 
development, deploy and

evolution

1

Combine together
the components that

already exist

2

Reuse and
facilitate the

customization

3
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“ 

     What I am promoting is the idea of µServices, the concepts of an 

OSGi service as a design primitive.

                                                                      ”
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Peter Kriens (2010)
https://blog.osgi.org/2010/03/services.html
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Microservice according to Fowler OSGi µServices
single application as a suite of small 
services ✔

running in its own process ✘

communicating with lightweight 
mechanisms ✔

built around business capabilities ✔

independently deployable ✔

minimum of centralized management ✔

may be written in different programming 
languages ✔

use different data storage technologies ✔
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1. Separate processes do come with a benefit
• Full isolation
• Easy Scalability 

2. Two OSGi specifications  
• Remote Services: Transport 
• Remote Service Admin: Topology, Service Discovery

OSGi Remote Services!
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OSGi µServices
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The best of both worlds
• Independent deployment, iterative development
• Fault tolerant – but no full isolation 
• No network latencies, reduced call stack
• More freedom to choose technology stack
• Less demanding for operations
• Established monitoring and deployment strategies
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• If you are building a microservice architecture, containers are the ideal 
deployment unit for any microservice.

• Liferay has long embraced and works constantly to support the technology of containers.

• Liferay has integrated the development environment with tools that facilitate the IT team for 
creating docker images and this is enabling for a context of DevOps.

• Directly from the Liferay Workspace we are able to create our docker image that contains the 
Liferay platform and the additional modules that we have developed and that we want to release.
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Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself. 
Liferay Workspace, however, provides an easy way to integrate Docker 
development into your existing development workflow with preconfigured Gradle 
tasks.
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Liferay is a DXP platform. What are the most common reasons for not using a 
DXP platform?

1. You can build your digital presence from scratch without a platform approach. This strategy will give 
you the most freedom, since you can create the ultimate customized solution to meet your needs.

2. Digital Experience Platforms are monoliths and it is not “cool” to use a monolithic architecture in 2020. 

Besides, with a monolith, it is harder to take advantage of containerization (think Docker and Kubernetes)

3. A Digital Experience Platform is a heavyweight compared to JavaScript front-ends with RESTful 
microservice APIs.

4. A Digital Experience Platform is harder to scale up for internet-scale applications, and it is harder to handle 
traffic bursts.
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What are the reasons for using a DXP platform?

1. A single unified platform that can be used to handle multiple use cases around which an enterprise can 
train its team.

2. A whole slew of out-of-the-box functionality including content management, personalization and targeting, 
security, collaboration, forms, workflow, analytics and optimization, commerce and more.

3. Multiple deployments. It is highly unlikely your organization will be deploying just one page, or even just one site. A 
Digital Experience Platform offers a way to manage all your pages and sites from one place, with a robust 
permissioning system to define roles and workflows.

4. Better metrics. A Digital Experience Platform often provides engagement metrics that help businesses understand 
which content is performing well and which isn't so they can make informed decisions about what pages and 
messaging are resonating with customers.
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1. Collaboration is key to creating modern digital experiences. Business users in marketing 

and other departments need to be empowered to modify content and messaging on the fly 

with minimal intervention from IT. A Digital Experience Platform allows developers to create 

pre-set content fragments that business users can reuse at will across sites and pages.
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1. Collaboration is key to creating modern digital experiences. Business users in marketing 

and other departments need to be empowered to modify content and messaging on the fly 

with minimal intervention from IT. A Digital Experience Platform allows developers to create 

pre-set content fragments that business users can reuse at will across sites and pages.

2. Headless and even decoupled capabilities for organizations with robust front-end 
development teams that wish to create their own presentation layers.
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Let's take a few minutes to respond to opponents of the DXP platform.

1. While the option to build your own digital platform and solution can look enticing to your engineering team, it is not 

to be taken lightly. Do you have the resources to build, maintain and improve your platform for years to come?

2. It is true that a digital experience platform is a monolith from the distribution point of view but Liferay is internally 
modular. By the way, you can successfully containerize Liferay.

3. Yes, a Digital Experience Platform is heavier compared to JavaScript front-ends with RESTful microservice APIs, but it also comes 

with significant, out-of-the-box functionality that can be used to create personalized, collaborative experiences for your users.

4. Yes, a Digital Experience Platform is harder to scale up for internet-scale applications and traffic bursts compared to JavaScript front-
ends and microservices. However, Digital Experience Platforms scale just fine for 99% (or higher) of use cases, many with millions of 
users and over a hundred million page hits a month.



Headless CMS open to Microservices



#LRBC2020

What Is a Headless CMS?

@antonio_musarra



#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content 
repository and gives access to this content via REST (or GraphQL) services. Liferay fully 
reflects this definition.



#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content 
repository and gives access to this content via REST (or GraphQL) services. Liferay fully 
reflects this definition.

In traditional CMS, you have the following core subsystems:
• Content creation and management
• Publication workflow
• Content delivery
• Analysis and monitoring



#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content 
repository and gives access to this content via REST (or GraphQL) services. Liferay fully 
reflects this definition.

In traditional CMS, you have the following core subsystems:
• Content creation and management
• Publication workflow
• Content delivery
• Analysis and monitoring

Headless CMS focuses just on content creation and publication workflow. It is your application's responsibility to get the 

content and display it in appropriate way based on your users' needs, devices they use, and channels they operate on.
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More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs 
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all 
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.
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More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs 
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all 
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs. 
GraphQL is also supported for easier development.

Support for Headless CMS and Commerce
Liferay supports APIs in all of our content and commerce features, allowing you to create a fluid front end for the entire 
Customer Journey.

Nicely fits into microservice-based solution landscapes
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