
Antonio Musarra
Senior Software Architect

Liferay as Digital Experience Platform in the context of Microservices

Presentation topics

#LRBC2020

Presentation topics

1. Overview on Microservices
2. Liferay as Microservices Platform
3. Digital Experience Platform
4. Headless CMS open to Microservices

@antonio_musarra

Overview on Microservices

#LRBC2020

Overview on Microservices

1. The architectural approach
2. An already known approach
3. From SOA architecture to Microservices
4. The advantages of a Microservices architecture
5. Disadvantages of the Microservices architecture

@antonio_musarra

#LRBC2020

The architectural approach

@antonio_musarra

#LRBC2020

The architectural approach

1. Microservices are an architectural approach to building applications

@antonio_musarra

#LRBC2020

2. What distinguishes architecture based on microservices from traditional monolithic
approaches is the subdivision of the app into its basic functions

The architectural approach

1. Microservices are an architectural approach to building applications

@antonio_musarra

#LRBC2020

2. What distinguishes architecture based on microservices from traditional monolithic
approaches is the subdivision of the app into its basic functions

The architectural approach

1. Microservices are an architectural approach to building applications

@antonio_musarra

3. Each function, called a service, can be compiled and implemented independently

#LRBC2020

2. What distinguishes architecture based on microservices from traditional monolithic
approaches is the subdivision of the app into its basic functions

The architectural approach

1. Microservices are an architectural approach to building applications

@antonio_musarra

3. Each function, called a service, can be compiled and implemented independently
4. Individual services may or may not work without compromising others

#LRBC2020

2. What distinguishes architecture based on microservices from traditional monolithic
approaches is the subdivision of the app into its basic functions

The architectural approach

1. Microservices are an architectural approach to building applications

@antonio_musarra

3. Each function, called a service, can be compiled and implemented independently
4. Individual services may or may not work without compromising others

#LRBC2020

The architectural approach

@antonio_musarra

#LRBC2020

The architectural approach

1. Therefore, a microservice is a basic function of an application, which runs
independently of the other services

@antonio_musarra

#LRBC2020

The architectural approach

1. Therefore, a microservice is a basic function of an application, which runs
independently of the other services

@antonio_musarra

2. However, the architecture based on microservices not only involves the low coupling
between the basic functions of an app, but proposes a restructuring of the development
teams and of the communication framework between the services

#LRBC2020

The architectural approach

1. Therefore, a microservice is a basic function of an application, which runs
independently of the other services

@antonio_musarra

2. However, the architecture based on microservices not only involves the low coupling
between the basic functions of an app, but proposes a restructuring of the development
teams and of the communication framework between the services

3. This approach offers the possibility to manage unavoidable critical issues, supports dynamic
scalability and facilitates the integration of new features

#LRBC2020

The architectural approach

1. Therefore, a microservice is a basic function of an application, which runs
independently of the other services

@antonio_musarra

2. However, the architecture based on microservices not only involves the low coupling
between the basic functions of an app, but proposes a restructuring of the development
teams and of the communication framework between the services

3. This approach offers the possibility to manage unavoidable critical issues, supports dynamic
scalability and facilitates the integration of new features

4. To deploy microservices and take advantage of this approach, you need to adapt the basic
elements of a Service-Oriented Architecture (SOA)

#LRBC2020

An already known approach

@antonio_musarra

#LRBC2020

An already known approach

1. Dividing an app into its basic functions and avoiding the pitfalls of the monolithic approach may

seem familiar concepts, because the architectural style of the microservices is similar to that of

the SOA (Service-Oriented Architecture) architecture, a well-established software design style

@antonio_musarra

#LRBC2020

An already known approach

1. Dividing an app into its basic functions and avoiding the pitfalls of the monolithic approach may

seem familiar concepts, because the architectural style of the microservices is similar to that of

the SOA (Service-Oriented Architecture) architecture, a well-established software design style

@antonio_musarra

2. In the early days of application development, even a minimal change to an existing app required a complete update
and a quality assurance cycle (QA) of its own, which risked slowing down the work of various secondary teams. This
approach is often referred to as "monolithic" because the whole app's source code was compiled into a single
deployment unit (for example, with the extension .war or .ear). If updates to part of the app caused errors, it was
necessary to disconnect everything, step back and correct. This approach is still applicable to small applications, but
growing companies cannot afford downtime

#LRBC2020

An already known approach

1. Dividing an app into its basic functions and avoiding the pitfalls of the monolithic approach may

seem familiar concepts, because the architectural style of the microservices is similar to that of

the SOA (Service-Oriented Architecture) architecture, a well-established software design style

@antonio_musarra

2. In the early days of application development, even a minimal change to an existing app required a complete update
and a quality assurance cycle (QA) of its own, which risked slowing down the work of various secondary teams. This
approach is often referred to as "monolithic" because the whole app's source code was compiled into a single
deployment unit (for example, with the extension .war or .ear). If updates to part of the app caused errors, it was
necessary to disconnect everything, step back and correct. This approach is still applicable to small applications, but
growing companies cannot afford downtime

3. And here comes the SOA (Service-Oriented Architecture) architecture, in which the apps are structured in reusable
services that communicate with each other via an Enterprise Service Bus (ESB)

#LRBC2020

An already known approach

@antonio_musarra

#LRBC2020

An already known approach

1. In the SOA architecture, the individual services focus on a specific business
process and follow a communication protocol, including SOAP, ActiveMQ or
Apache Thrift, to be shared through the ESB

@antonio_musarra

#LRBC2020

An already known approach

1. In the SOA architecture, the individual services focus on a specific business
process and follow a communication protocol, including SOAP, ActiveMQ or
Apache Thrift, to be shared through the ESB

@antonio_musarra

2. Overall, this suite of services integrated through an ESB constitutes an application

#LRBC2020

An already known approach

1. In the SOA architecture, the individual services focus on a specific business
process and follow a communication protocol, including SOAP, ActiveMQ or
Apache Thrift, to be shared through the ESB

@antonio_musarra

2. Overall, this suite of services integrated through an ESB constitutes an application

3. In addition, this method allows you to compile, test and modify multiple services
simultaneously, freeing IT teams from monolithic development cycles. However, since ESB
represents a single point of failure for the whole system, it could pose an obstacle for the
whole organization

#LRBC2020

From SOA architecture to Microservices

@antonio_musarra

#LRBC2020

From SOA architecture to Microservices

1. Microservices can communicate with each other, generally in stateless mode, allowing
you to build apps with greater fault tolerance and less dependent on a single ESB

@antonio_musarra

#LRBC2020

From SOA architecture to Microservices

1. Microservices can communicate with each other, generally in stateless mode, allowing
you to build apps with greater fault tolerance and less dependent on a single ESB

@antonio_musarra

2. They communicate through language-independent application programming interfaces (APIs) and this
allows development teams to choose their own tools.

#LRBC2020

From SOA architecture to Microservices

1. Microservices can communicate with each other, generally in stateless mode, allowing
you to build apps with greater fault tolerance and less dependent on a single ESB

@antonio_musarra

2. They communicate through language-independent application programming interfaces (APIs) and this
allows development teams to choose their own tools.

3. Considering the evolution of SOA, microservices are not an absolute novelty, but lately they have become
more attractive thanks to the advances in containerization technologies.

#LRBC2020

From SOA architecture to Microservices

1. Microservices can communicate with each other, generally in stateless mode, allowing
you to build apps with greater fault tolerance and less dependent on a single ESB

@antonio_musarra

2. They communicate through language-independent application programming interfaces (APIs) and this
allows development teams to choose their own tools.

3. Considering the evolution of SOA, microservices are not an absolute novelty, but lately they have become
more attractive thanks to the advances in containerization technologies.

4. Today Linux containers allow you to run multiple parts of an app independently, on the same hardware,
with far greater control over individual components and life cycles.

#LRBC2020

From SOA architecture to Microservices

1. Microservices can communicate with each other, generally in stateless mode, allowing
you to build apps with greater fault tolerance and less dependent on a single ESB

@antonio_musarra

2. They communicate through language-independent application programming interfaces (APIs) and this
allows development teams to choose their own tools.

3. Considering the evolution of SOA, microservices are not an absolute novelty, but lately they have become
more attractive thanks to the advances in containerization technologies.

4. Today Linux containers allow you to run multiple parts of an app independently, on the same hardware,
with far greater control over individual components and life cycles.

5. In combination with the API and DevOps teams, containerized microservices form the basis of cloud-native
applications.

#LRBC2020

The advantages of a Microservices architecture

@antonio_musarra

#LRBC2020

The advantages of a Microservices architecture

Based on a distributed architecture, microservices allow for more efficient
development and routines. The ability to develop multiple microservices
simultaneously allows multiple developers to work on the same app
simultaneously, reducing development time.

@antonio_musarra

#LRBC2020

The advantages of a Microservices architecture

Based on a distributed architecture, microservices allow for more efficient
development and routines. The ability to develop multiple microservices
simultaneously allows multiple developers to work on the same app
simultaneously, reducing development time.

@antonio_musarra

#LRBC2020

Disadvantages of the Microservices architecture

@antonio_musarra

#LRBC2020

Disadvantages of the Microservices architecture

1. If you have decided to switch to an architecture based on microservices, it is essential to
be able to change the structure of communication and collaboration between the teams,
not just that of the apps.

@antonio_musarra

#LRBC2020

Disadvantages of the Microservices architecture

1. If you have decided to switch to an architecture based on microservices, it is essential to
be able to change the structure of communication and collaboration between the teams,
not just that of the apps.

@antonio_musarra

2. Changing corporate culture can be difficult, in part because each team follows its own deployment
cadence and is responsible for a single service for a specific group of customers. While not a
problem strictly related to developers, overcoming it becomes essential for the success of the
architecture based on microservices.

#LRBC2020

Disadvantages of the Microservices architecture

1. If you have decided to switch to an architecture based on microservices, it is essential to
be able to change the structure of communication and collaboration between the teams,
not just that of the apps.

@antonio_musarra

2. Changing corporate culture can be difficult, in part because each team follows its own deployment
cadence and is responsible for a single service for a specific group of customers. While not a
problem strictly related to developers, overcoming it becomes essential for the success of the
architecture based on microservices.

3. Partitioning an application into independent services also means that there are
multiple moving parts to maintain. This is clearly quite evident in this type of
system but there are consequently new factors to consider.

#LRBC2020

Disadvantages of the Microservices architecture

1. If you have decided to switch to an architecture based on microservices, it is essential to
be able to change the structure of communication and collaboration between the teams,
not just that of the apps.

@antonio_musarra

2. Changing corporate culture can be difficult, in part because each team follows its own deployment
cadence and is responsible for a single service for a specific group of customers. While not a
problem strictly related to developers, overcoming it becomes essential for the success of the
architecture based on microservices.

3. Partitioning an application into independent services also means that there are
multiple moving parts to maintain. This is clearly quite evident in this type of
system but there are consequently new factors to consider.

Liferay as Microservices Platform

#LRBC2020

Liferay as Microservices Platform

1. The Platform
2. OSGi µServices
3. Deploy to Container Platform

@antonio_musarra

#LRBC2020

The Platform

@antonio_musarra

#LRBC2020

The Platform

1. OSGi as a core technology of Liferay

@antonio_musarra

#LRBC2020

The Platform

1. OSGi as a core technology of Liferay

@antonio_musarra

2. Defined best practices can be helpful

#LRBC2020

The Platform

1. OSGi as a core technology of Liferay

@antonio_musarra

2. Defined best practices can be helpful

3. Transparent platform valuable for developers

#LRBC2020

The Platform

1. OSGi as a core technology of Liferay

@antonio_musarra

2. Defined best practices can be helpful

3. Transparent platform valuable for developers

4. Opportunity for iterative modularization

#LRBC2020

The Platform

“

 […] you shouldn’t start with a microservices architectures. Instead
begin with a monolith, keep it modular, and split it into microservices
once the monolith become a problem.

 ”

@antonio_musarra

Martin Fowler (2014)
https://martinfowler.com/articles/microservices.html

#LRBC2020

The Platform

@antonio_musarra

#LRBC2020

The Platform

@antonio_musarra

What are the key aspects of a platform like Liferay that embraces
modularity?

#LRBC2020

The Platform

@antonio_musarra

What are the key aspects of a platform like Liferay that embraces
modularity?

Allow independence of
development, deploy and

evolution

1

#LRBC2020

The Platform

@antonio_musarra

What are the key aspects of a platform like Liferay that embraces
modularity?

Allow independence of
development, deploy and

evolution

1

Combine together
the components that

already exist

2

#LRBC2020

The Platform

@antonio_musarra

What are the key aspects of a platform like Liferay that embraces
modularity?

Allow independence of
development, deploy and

evolution

1

Combine together
the components that

already exist

2

Reuse and
facilitate the

customization

3

#LRBC2020

OSGi µServices

“

 What I am promoting is the idea of µServices, the concepts of an

OSGi service as a design primitive.

 ”

@antonio_musarra

Peter Kriens (2010)
https://blog.osgi.org/2010/03/services.html

#LRBC2020

OSGi µServices

@antonio_musarra

#LRBC2020

OSGi µServices

@antonio_musarra

1. In OSGi Services have existed for even longer
• A way to maintain loose coupling between modules
• A dynamic representation of a changing physical environment

#LRBC2020

OSGi µServices

@antonio_musarra

1. In OSGi Services have existed for even longer
• A way to maintain loose coupling between modules
• A dynamic representation of a changing physical environment

2. OSGi services are ultra-lightweight microservices
• Just a call from one object to another
• OSGi services are usually in-process

#LRBC2020

OSGi µServices

@antonio_musarra

1. In OSGi Services have existed for even longer
• A way to maintain loose coupling between modules
• A dynamic representation of a changing physical environment

2. OSGi services are ultra-lightweight microservices
• Just a call from one object to another
• OSGi services are usually in-process

3. An OSGi service is a Java Object
• It’s registered in the OSGi Service Registry
• The registration includes the Service’s API

#LRBC2020

OSGi µServices

@antonio_musarra

1. In OSGi Services have existed for even longer
• A way to maintain loose coupling between modules
• A dynamic representation of a changing physical environment

2. OSGi services are ultra-lightweight microservices
• Just a call from one object to another
• OSGi services are usually in-process

3. An OSGi service is a Java Object
• It’s registered in the OSGi Service Registry
• The registration includes the Service’s API

#LRBC2020

OSGi µServices

@antonio_musarra

#LRBC2020

OSGi µServices

@antonio_musarra

1. OSGi services also have properties
• These provide additional information
• They can help clients when multiple services exist
• They can also communicate other information...

#LRBC2020

OSGi µServices

@antonio_musarra

1. OSGi services also have properties
• These provide additional information
• They can help clients when multiple services exist
• They can also communicate other information...

2. OSGi Services are an excellent way to build microservices
• Easy ways to Publish an Service
• Easy ways to Consume an Service

#LRBC2020

OSGi µServices

@antonio_musarra

1. OSGi services also have properties
• These provide additional information
• They can help clients when multiple services exist
• They can also communicate other information...

2. OSGi Services are an excellent way to build microservices
• Easy ways to Publish an Service
• Easy ways to Consume an Service

#LRBC2020

OSGi µServices

@antonio_musarra

Microservice according to Fowler OSGi µServices
single application as a suite of small
services ✔

running in its own process ✘

communicating with lightweight
mechanisms ✔

built around business capabilities ✔

independently deployable ✔

minimum of centralized management ✔

may be written in different programming
languages ✔

use different data storage technologies ✔

#LRBC2020

OSGi µServices

@antonio_musarra

#LRBC2020

OSGi µServices

@antonio_musarra

1. Separate processes do come with a benefit
• Full isolation
• Easy Scalability

#LRBC2020

OSGi µServices

@antonio_musarra

1. Separate processes do come with a benefit
• Full isolation
• Easy Scalability

2. Two OSGi specifications
• Remote Services: Transport
• Remote Service Admin: Topology, Service Discovery

#LRBC2020

OSGi µServices

@antonio_musarra

1. Separate processes do come with a benefit
• Full isolation
• Easy Scalability

2. Two OSGi specifications
• Remote Services: Transport
• Remote Service Admin: Topology, Service Discovery

OSGi Remote Services!

#LRBC2020

OSGi µServices

@antonio_musarra

#LRBC2020

OSGi µServices

@antonio_musarra

The best of both worlds
• Independent deployment, iterative development
• Fault tolerant – but no full isolation
• No network latencies, reduced call stack
• More freedom to choose technology stack
• Less demanding for operations
• Established monitoring and deployment strategies

#LRBC2020

Deploy to Container Platform

@antonio_musarra

#LRBC2020

Deploy to Container Platform

@antonio_musarra

• If you are building a microservice architecture, containers are the ideal
deployment unit for any microservice.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

• If you are building a microservice architecture, containers are the ideal
deployment unit for any microservice.

• Liferay has long embraced and works constantly to support the technology of containers.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

• If you are building a microservice architecture, containers are the ideal
deployment unit for any microservice.

• Liferay has long embraced and works constantly to support the technology of containers.

• Liferay has integrated the development environment with tools that facilitate the IT team for
creating docker images and this is enabling for a context of DevOps.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

• If you are building a microservice architecture, containers are the ideal
deployment unit for any microservice.

• Liferay has long embraced and works constantly to support the technology of containers.

• Liferay has integrated the development environment with tools that facilitate the IT team for
creating docker images and this is enabling for a context of DevOps.

• Directly from the Liferay Workspace we are able to create our docker image that contains the
Liferay platform and the additional modules that we have developed and that we want to release.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Liferay provides Docker images for:
• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from Docker Hub and manage them yourself.
Liferay Workspace, however, provides an easy way to integrate Docker
development into your existing development workflow with preconfigured Gradle
tasks.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Thanks to the support for containers, it is possible to deploy our Liferay
applications on Container Platform, such as Google Kubernetes Engine or
Read Hat OpenShit Container Platform.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Thanks to the support for containers, it is possible to deploy our Liferay
applications on Container Platform, such as Google Kubernetes Engine or
Read Hat OpenShit Container Platform.

Marcial Calvo Valenzuela (consultant at Liferay) recently published on the Liferay blog, the article
Deploying Liferay 7.3 CE in Kubernetes. This article describe how to deploy Liferay 7.3 CE in
conjunction with a service stack on Kubernetes, Nginx as an ingress, MySQL 5.7 as a database
and ElasticSearch as engine search indexer, as well as, how to manage K8s
from GUI dashboard.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Thanks to the support for containers, it is possible to deploy our Liferay
applications on Container Platform, such as Google Kubernetes Engine or
Read Hat OpenShit Container Platform.

Marcial Calvo Valenzuela (consultant at Liferay) recently published on the Liferay blog, the article
Deploying Liferay 7.3 CE in Kubernetes. This article describe how to deploy Liferay 7.3 CE in
conjunction with a service stack on Kubernetes, Nginx as an ingress, MySQL 5.7 as a database
and ElasticSearch as engine search indexer, as well as, how to manage K8s
from GUI dashboard.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Thanks to the support for containers, it is possible to deploy our Liferay
applications on Container Platform, such as Google Kubernetes Engine or
Read Hat OpenShit Container Platform.

Marcial Calvo Valenzuela (consultant at Liferay) recently published on the Liferay blog, the article
Deploying Liferay 7.3 CE in Kubernetes. This article describe how to deploy Liferay 7.3 CE in
conjunction with a service stack on Kubernetes, Nginx as an ingress, MySQL 5.7 as a database
and ElasticSearch as engine search indexer, as well as, how to manage K8s
from GUI dashboard.

#LRBC2020

Deploy to Container Platform

@antonio_musarra

Thanks to the support for containers, it is possible to deploy our Liferay
applications on Container Platform, such as Google Kubernetes Engine or
Read Hat OpenShit Container Platform.

Marcial Calvo Valenzuela (consultant at Liferay) recently published on the Liferay blog, the article
Deploying Liferay 7.3 CE in Kubernetes. This article describe how to deploy Liferay 7.3 CE in
conjunction with a service stack on Kubernetes, Nginx as an ingress, MySQL 5.7 as a database
and ElasticSearch as engine search indexer, as well as, how to manage K8s
from GUI dashboard.

Digital Experience Platform

#LRBC2020

Digital Experience Platform

@antonio_musarra

#LRBC2020

Digital Experience Platform

@antonio_musarra

Liferay is a DXP platform. What are the most common reasons for not using a
DXP platform?

#LRBC2020

Digital Experience Platform

@antonio_musarra

Liferay is a DXP platform. What are the most common reasons for not using a
DXP platform?

1. You can build your digital presence from scratch without a platform approach. This strategy will give
you the most freedom, since you can create the ultimate customized solution to meet your needs.

#LRBC2020

Digital Experience Platform

@antonio_musarra

Liferay is a DXP platform. What are the most common reasons for not using a
DXP platform?

1. You can build your digital presence from scratch without a platform approach. This strategy will give
you the most freedom, since you can create the ultimate customized solution to meet your needs.

2. Digital Experience Platforms are monoliths and it is not “cool” to use a monolithic architecture in 2020.

Besides, with a monolith, it is harder to take advantage of containerization (think Docker and Kubernetes)

#LRBC2020

Digital Experience Platform

@antonio_musarra

Liferay is a DXP platform. What are the most common reasons for not using a
DXP platform?

1. You can build your digital presence from scratch without a platform approach. This strategy will give
you the most freedom, since you can create the ultimate customized solution to meet your needs.

2. Digital Experience Platforms are monoliths and it is not “cool” to use a monolithic architecture in 2020.

Besides, with a monolith, it is harder to take advantage of containerization (think Docker and Kubernetes)

3. A Digital Experience Platform is a heavyweight compared to JavaScript front-ends with RESTful
microservice APIs.

#LRBC2020

Digital Experience Platform

@antonio_musarra

Liferay is a DXP platform. What are the most common reasons for not using a
DXP platform?

1. You can build your digital presence from scratch without a platform approach. This strategy will give
you the most freedom, since you can create the ultimate customized solution to meet your needs.

2. Digital Experience Platforms are monoliths and it is not “cool” to use a monolithic architecture in 2020.

Besides, with a monolith, it is harder to take advantage of containerization (think Docker and Kubernetes)

3. A Digital Experience Platform is a heavyweight compared to JavaScript front-ends with RESTful
microservice APIs.

4. A Digital Experience Platform is harder to scale up for internet-scale applications, and it is harder to handle
traffic bursts.

#LRBC2020

Digital Experience Platform

@antonio_musarra

#LRBC2020

Digital Experience Platform

@antonio_musarra

What are the reasons for using a DXP platform?

#LRBC2020

Digital Experience Platform

@antonio_musarra

What are the reasons for using a DXP platform?

1. A single unified platform that can be used to handle multiple use cases around which an enterprise can
train its team.

#LRBC2020

Digital Experience Platform

@antonio_musarra

What are the reasons for using a DXP platform?

1. A single unified platform that can be used to handle multiple use cases around which an enterprise can
train its team.

2. A whole slew of out-of-the-box functionality including content management, personalization and targeting,
security, collaboration, forms, workflow, analytics and optimization, commerce and more.

#LRBC2020

Digital Experience Platform

@antonio_musarra

What are the reasons for using a DXP platform?

1. A single unified platform that can be used to handle multiple use cases around which an enterprise can
train its team.

2. A whole slew of out-of-the-box functionality including content management, personalization and targeting,
security, collaboration, forms, workflow, analytics and optimization, commerce and more.

3. Multiple deployments. It is highly unlikely your organization will be deploying just one page, or even just one site. A
Digital Experience Platform offers a way to manage all your pages and sites from one place, with a robust
permissioning system to define roles and workflows.

#LRBC2020

Digital Experience Platform

@antonio_musarra

What are the reasons for using a DXP platform?

1. A single unified platform that can be used to handle multiple use cases around which an enterprise can
train its team.

2. A whole slew of out-of-the-box functionality including content management, personalization and targeting,
security, collaboration, forms, workflow, analytics and optimization, commerce and more.

3. Multiple deployments. It is highly unlikely your organization will be deploying just one page, or even just one site. A
Digital Experience Platform offers a way to manage all your pages and sites from one place, with a robust
permissioning system to define roles and workflows.

4. Better metrics. A Digital Experience Platform often provides engagement metrics that help businesses understand
which content is performing well and which isn't so they can make informed decisions about what pages and
messaging are resonating with customers.

#LRBC2020

Digital Experience Platform

@antonio_musarra

#LRBC2020

Digital Experience Platform

@antonio_musarra

1. Collaboration is key to creating modern digital experiences. Business users in marketing

and other departments need to be empowered to modify content and messaging on the fly

with minimal intervention from IT. A Digital Experience Platform allows developers to create

pre-set content fragments that business users can reuse at will across sites and pages.

#LRBC2020

Digital Experience Platform

@antonio_musarra

1. Collaboration is key to creating modern digital experiences. Business users in marketing

and other departments need to be empowered to modify content and messaging on the fly

with minimal intervention from IT. A Digital Experience Platform allows developers to create

pre-set content fragments that business users can reuse at will across sites and pages.

2. Headless and even decoupled capabilities for organizations with robust front-end
development teams that wish to create their own presentation layers.

#LRBC2020

Digital Experience Platform

@antonio_musarra

#LRBC2020

Digital Experience Platform

@antonio_musarra

Let's take a few minutes to respond to opponents of the DXP platform.

#LRBC2020

Digital Experience Platform

@antonio_musarra

Let's take a few minutes to respond to opponents of the DXP platform.

1. While the option to build your own digital platform and solution can look enticing to your engineering team, it is not

to be taken lightly. Do you have the resources to build, maintain and improve your platform for years to come?

#LRBC2020

Digital Experience Platform

@antonio_musarra

Let's take a few minutes to respond to opponents of the DXP platform.

1. While the option to build your own digital platform and solution can look enticing to your engineering team, it is not

to be taken lightly. Do you have the resources to build, maintain and improve your platform for years to come?

2. It is true that a digital experience platform is a monolith from the distribution point of view but Liferay is internally
modular. By the way, you can successfully containerize Liferay.

#LRBC2020

Digital Experience Platform

@antonio_musarra

Let's take a few minutes to respond to opponents of the DXP platform.

1. While the option to build your own digital platform and solution can look enticing to your engineering team, it is not

to be taken lightly. Do you have the resources to build, maintain and improve your platform for years to come?

2. It is true that a digital experience platform is a monolith from the distribution point of view but Liferay is internally
modular. By the way, you can successfully containerize Liferay.

3. Yes, a Digital Experience Platform is heavier compared to JavaScript front-ends with RESTful microservice APIs, but it also comes

with significant, out-of-the-box functionality that can be used to create personalized, collaborative experiences for your users.

#LRBC2020

Digital Experience Platform

@antonio_musarra

Let's take a few minutes to respond to opponents of the DXP platform.

1. While the option to build your own digital platform and solution can look enticing to your engineering team, it is not

to be taken lightly. Do you have the resources to build, maintain and improve your platform for years to come?

2. It is true that a digital experience platform is a monolith from the distribution point of view but Liferay is internally
modular. By the way, you can successfully containerize Liferay.

3. Yes, a Digital Experience Platform is heavier compared to JavaScript front-ends with RESTful microservice APIs, but it also comes

with significant, out-of-the-box functionality that can be used to create personalized, collaborative experiences for your users.

4. Yes, a Digital Experience Platform is harder to scale up for internet-scale applications and traffic bursts compared to JavaScript front-
ends and microservices. However, Digital Experience Platforms scale just fine for 99% (or higher) of use cases, many with millions of
users and over a hundred million page hits a month.

Headless CMS open to Microservices

#LRBC2020

What Is a Headless CMS?

@antonio_musarra

#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content
repository and gives access to this content via REST (or GraphQL) services. Liferay fully
reflects this definition.

#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content
repository and gives access to this content via REST (or GraphQL) services. Liferay fully
reflects this definition.

In traditional CMS, you have the following core subsystems:
• Content creation and management
• Publication workflow
• Content delivery
• Analysis and monitoring

#LRBC2020

What Is a Headless CMS?

@antonio_musarra

A Headless CMS is a backend only content management system which works as a content
repository and gives access to this content via REST (or GraphQL) services. Liferay fully
reflects this definition.

In traditional CMS, you have the following core subsystems:
• Content creation and management
• Publication workflow
• Content delivery
• Analysis and monitoring

Headless CMS focuses just on content creation and publication workflow. It is your application's responsibility to get the

content and display it in appropriate way based on your users' needs, devices they use, and channels they operate on.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs.
GraphQL is also supported for easier development.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs.
GraphQL is also supported for easier development.

Support for Headless CMS and Commerce
Liferay supports APIs in all of our content and commerce features, allowing you to create a fluid front end for the entire
Customer Journey.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs.
GraphQL is also supported for easier development.

Support for Headless CMS and Commerce
Liferay supports APIs in all of our content and commerce features, allowing you to create a fluid front end for the entire
Customer Journey.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs.
GraphQL is also supported for easier development.

Support for Headless CMS and Commerce
Liferay supports APIs in all of our content and commerce features, allowing you to create a fluid front end for the entire
Customer Journey.

#LRBC2020

Liferay as a Headless platform

@antonio_musarra

More flexibility and control
Liferay's foundations as a development platform continue to evolve with the addition of headless APIs
for out-of-the-box services. Developers now have unparalleled flexibility to integrate Liferay into all
systems, whether it's collecting data in Liferay or bringing Liferay into an existing ecosystem.

Compliant with OpenAPI standards
Liferay's API level supports the OpenAPI specification, the most popular open source framework for RESTful APIs.
GraphQL is also supported for easier development.

Support for Headless CMS and Commerce
Liferay supports APIs in all of our content and commerce features, allowing you to create a fluid front end for the entire
Customer Journey.

Nicely fits into microservice-based solution landscapes

#LRBC2020

A Headless API example using Gatsby

@antonio_musarra

#LRBC2020

A Headless API example using Gatsby

@antonio_musarra

Chris Mount on Liferay's blog has published two articles dealing with this topic.

#LRBC2020

A Headless API example using Gatsby

@antonio_musarra

Chris Mount on Liferay's blog has published two articles dealing with this topic.

#LRBC2020

Domande

CONTATTI
Antonio Musarra
Email antonio.musarra@smc.it
Skype amusarra
GitHub https://github.com/amusarra
Mobile +39 345 1113480
Phone

@antonio_musarra

https://github.com/amusarra

Thank you ☺

